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Abstract. Fault diagnosis is vital for the health management of rotat-
ing machinery. The non-stationary working conditions is one of the major
challenges in this field. The key is to extract working-condition-invariant
but fault-discriminative features. Traditional methods use expert knowl-
edge on the machines and signal processing to extract fault features from
vibration signals manually. This paper regards this issue as a domain
adaption problem and utilizes deep learning technique to learn fault dis-
criminative features automatically. We teach deep Convolutional Neu-
ral Networks to pronounce diagnostic results from raw vibration data
and propose a Rotating Speed Normalization method to improve the
domain adaption ability of the neural network models. A case study of
rotor crack diagnosis under non-stationary and ever-changing rotating
speeds is presented. Using 95600 signal segments, we compare the diag-
nostic performance of ours and reported Convolutional Neural Network
models. The results show that our model gives solid diagnostic accu-
racy from non-stationary vibration signals, and the proposed Rotating
Speed Normalization method can successfully boost the performance of
all investigated CNN models.

Keywords: Fault diagnosis · Rotating machine · Deep learning ·
Domain adaption · Convolutional Neural Networks

1 Introduction

Fault diagnosis for rotating machinery is very important in many industries such
as the automobile, mining, and aerospace. It aims to reduce maintenance costs
and avoid casualties. Many studies, e.g. [1] and [13], took data driven approaches
in which diagnostic models are built upon historical data. However, traditional
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data driven methods often use expert knowledge and human labours to extract
potential fault indicative features from raw sensory data. A new way is to extract
features with deep learning models automatically [2,8].

Convolutional Neural Network (CNN) have been proven to be one of the
most powerful deep learning models for many pattern recognition tasks, such as
image classification [5] and music tagging [11]. In the past three years, CNNs
have been applied to solve fault classification tasks for rotating machines. An
overview is given in Table 1.

Table 1. CNN architectures and data sets in surveyed papers

Research item #Layers Max kernel #Training

Chen et al. [3] 1 5 × 5 7200

Guo et al. [4] 3 5 × 5 2000

Lu et al. [14] 2 5 × 5 N/A

Li et al. [12] 3 5 × 5 10000

Jing et al. [9] 3 65 × 1 2620

Janssens et al. [7] 1 64 × 2 19200

Jing et al. [10] 1 64, 32 × 1 360, 298

Zhang et al. [23] 5 64 × 1 19800

Zhang et al. [22] 6 64 × 1 19800

Xia et al. [19] 2 17 × 3, 2 2520, 4200

Ince et al. [6] 3 9 × 1 468

This paper 9 3 × 1 40000

In Ref. [3,4,12,14], input signals are organized as 2D arrays to adapt
CNNs designed for image classification. Other researches in Table 1 used one-
dimensional CNNs and take 1D signals or frequency spectrum as inputs. This
one-dimensional form is a more natural for fault diagnosis.

State-of-the-art CNN models [5] for image recognition go to 152 layers while
fault diagnostic CNN models reviewed in Table 1 are comparatively shallow. In
general, deeper models are more likely to overfit and demand larger data sets
for training. However, neurons in deeper layers of CNNs receive information
from larger signals segments [17], which can be beneficial for fault diagnosis.
Although wide convolutional kernels used in [7,9,10] can enlarge the receptive
field of neuron in shallow layers, CNNs are usually designed as deep structures
to learn more complicated representations. Zhang et al. [22,23] used wide kernels
only in the first layer and deepened the structure to 6 layers. Deeper structures
with only small kernels for fault diagnosis have not been investigated according
to our literature survey.

Despite the fact that deep learning has surprised us with high fault classi-
fication accuracy, the variable working conditions of machines still cause trou-
ble. To collect the data of all possible working conditions for model training
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maybe prohibitive. This causes distributional differences in source and target
data domains where we draw training and testing samples from. Cross domain
learning problems are thus introduced [16]. Taking rotating speed as an example,
the vibration behavior of a machine would change as the rotating speed varies.
Training data collected in a limited range of rotating speed will be different to
testing data from other ranges. In such a case, diagnostic models trained on the
source domain data may not be well generalized for the target test data.

To perform domain adaption in fault diagnosis, Ref. [15,20,21] introduced
statistical methods to force models to learn work-condition-invariant but fault-
discriminative features. The above studies presented solid cross domain learning
results for PHM09 Challenge data (different rotating speeds [15,20]) and CWRU
Bearing data (different loads [15,21]).

However, two problems remain unsolved. One is that aforementioned methods
require target domain data for training. In many industry situations, target
domain data only show up during the running stage when the model training
is already completed. The other one is that current studies only consider some
fixed working conditions. In reality, the operational conditions, such as rotating
speed, of a machine may be ever-changing and non-stationary. This is to say that
the source and target domains may contain data collected under two ranges of
working conditions instead of different but fixed ones.

Using raw vibration data and rotating speed information, in this paper, we
adopt deep Convolutional Neural Networks (CNNs) to perform fault diagnosis. A
new domain adaption method, rotating speed normalization (RSN), for vibration
signals of rotating machines is proposed to tackle the cross domain learning
problem caused by the fluctuation of rotating speed. The diagnostic performance
and the effectiveness of the proposed domain adaption method are validated
through a rotor crack diagnosis case study. The main contributions of this paper
are summarized as follows:

1. Diagnosis performance of several different CNN structures, including a pro-
posed 9 layer one, are studied and compared;

2. Experimental data are collected under large speed fluctuations instead of fixed
ones, and the total amount of samples is 95600;

3. Considering the effect of centrifugal force, domain adaption for rotating speed
fluctuation is implemented without target domain data.

In the following parts of this paper, Sect. 2 describes our CNN design, Sect. 3
explains the proposed RSN method. Section 4 presents the conducted case study.
Section 5 concludes the paper.

2 CNN Architecture

Typically, CNN models are hierarchically arranged with convolutional layers,
pooling layers, and fully connected layers. In a convolutional layer, convolutional
kernels (also called filters) are trained to capture the local information of its input
using convolutional operations. Pooling layers are designed to reduce the number
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of captured features and fully connected layers can be regarded as a conventional
classifier that takes learned features as inputs. The output size of the last fully
connected layer corresponds to the number of classes (health conditions) of a
certain task. Instead of revisiting detailed foundations and training procedures
for CNNs, paper [23] is recommended for further reading.

The CNN architecture used in [6] is depicted on the left side of Fig. 1. The
WDCNN architecture used in [23] is drawn in the middle. Our proposed architec-
ture is shown on the right hand side of Fig. 1. The black boxes represent inputs
or outputs while the coloured boxes are different layers in CNNs. Taking the
design of vgg-net in [17], we construct a 9 layer CNN (DCNN9) with only small
kernels. The three CNN architectures in Fig. 1 are compared using the same data
set. It should be noticed that the output size of the last fully connected layer
will be set equal to the number of classes of a task.
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Fig. 1. Network architectures for fault diagnosis. Left: Ince’s model [6] with 3 convolu-
tional layers. Middle: WDCNN model [23] with 1 wide kernel layer and 4 small kernel
layers. Right: Proposed deep CNN with 9 layers of small kernels. E.g., ‘64 × 1 conv,
16, /16’ denotes a convolutional layer with 16 kernels, size 64 × 1, stride 16; a box
marked ‘2 × 1 pool, /2’ means a pooling layer with a size of 2 × 1, stride 2; ‘fc 100’ is
a fully connected layer with 100 output dimensions. The numbers between boxes are
the output sizes of the previous layers.
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In our DCNN9, the kernel sizes (F ) are 3, the stride (S) and the padding size
(P ) are set to be 1. According to the formula Sout = (Sin − F + 2P )/S + 1, the
size of input (Sin) and output (Sout) of a convolutional layer will be the same.
Pooling layers are used to reduce the dimension of features. The choice of the
number of kernels and layer output size is adopted from the design of WDCNN.

3 Rotating Speed Normalization

To address the cross domain learning problem caused by rotating speed fluctua-
tion, we propose an instance reweighing domain adaption technique for rotating
machines. Rotating speed is utilized to preprocess the vibration signals in both
training and testing stages. No testing data is required during the training pro-
cess.

In [18], Stander et al. presented a load demodulation normalization (LDN)
for vibration signal to get a more diverged hand-craft feature vector when the
load is fluctuating. Original signals are divided by a filtered modulation sig-
nal before feature extraction. Similarly, considering the effect of the centrifugal
force, we propose a simple rotating speed normalization (RSN) for displacement
vibration signals. It is known that centrifugal force F = mw2r (where m stands
for unbalance mass, w is angular speed, and r is the distance of unbalance mass
to the rotation centre) of a unbalance mass is proportional to the square of its
rotating speed. This indicates that the amplitude of measured vibration should
be proportional to the square of the rotating speed. Without rigorous mathemat-
ics but simply based on empirical observation, we divide the measured vibration
by the square of the rotating speed (w2) before training and testing the CNN
models. The square of the global mean rotating speed is used to control the scale
of the vibration amplitude. The RSN process can be written as

Xrsn = Rtr
2
Xraw ⊗ [R]−2

where Rtr is the rotating speed matrix of training samples, Xraw and Xrsn are
raw and RSN vibration, and R is the rotating speed matrix corresponding to
the vibration matrix. We also have Xrsn,Xraw, R ∈ �n×l, where n stands for
the number of samples, and l for the length of each signal sample. The overline
above Rtr gives its average value, ⊗ denotes element-wise matrix multiplication,
and [·]k calculates element-wise k power. To be clear, Rtr

2
can also be any other

suitable scalar that preserves the numerical stability of Xrsn.

4 Experimental

In this section, an experimental demonstration to the CNN based diagnosis and
the validation of our RSN is given. All the data are collected from a MFS-MG
test rig of SpectraQuest Inc., shown in Fig. 2. The CNNs codes are implemented
with Pytorch and we run them on a PC with Intel i7-7700k CPU and a single
Nvidia GTX-1080 GPU.
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Fig. 2. Experimental test rig with a crack shaft study kit. The vibration signal is
obtained by a displacement transducer and the rotating speed is measured via a
tachometer (one pulse per revolution).

4.1 Data Collection

This experiment use the flange in Fig. 2 with removable bolts to simulate rotor
crack conditions. Data sets SF01 and SF03 are collected respectively when the
drive speed curve is (a) and (c) in Fig. 3. The rotating speeds are measured
using a tachometer and the vibrations are collected by a displacement transducer
marked by blue square frames in Fig. 2. Under each speed curve, four health
conditions are considered, including a healthy case and cracked cases with three
different levels simulated by removing 1, 2 or 3 bolts on the flange. For each
condition, 2390 s of vibration signal and tachometer signal are collected with a
sampling frequency of 10240 Hz. Then the vibration signals are sliced as input
data of CNNs sized at 2048 × 1 × 1. No data augmentation is used in this
experiment. In total, 95600 data samples are measured and each data set has
47800 samples. For both data sets (SF01 and SF03), their samples are then
randomly split into training and testing sets with sizes of 40000 and 7800.
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Fig. 3. Examples of collected vibrations and rotating speed curves. (a) and (c): Rotat-
ing speed curve and vibration signal of data set SF01. (b) and (d): Rotating speed curve
and vibration signal of data set SF03. SF is the abbreviation for “Speed Fluctuation”.
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4.2 CNN Parameters

Determining hyper-parameters for CNN trainings is an important issue. In this
work, ReLU activations are used after every pooling layer and in the fully con-
nected layers. Batch normalization is applied for the input layer and every acti-
vation layers. Cross entropy is used as loss function and Adam algorithm with
default β = (0.9, 0.999) is implemented to train the models. An L2 penalty is
appended to the loss function for weight decay and the decay factor is 1e−4. We
set the initial learning rate at 1e−4 and then halve it every 5 epoch. Batchsize
is 200 and epoch number goes to 20. The number of output classes is 4 for the
4 health conditions in our experiment.

4.3 Results and Discussions

To justify the choice of small kernels and demonstrate the effectiveness of RSN on
domain adaption, Table 2 gives the test performance of three CNN models (Ince’s
model [6], Zhang’s WDCNN [23] and our proposed DCNN9) with raw signals and
the test performance after utilizing the proposed RSN method. For each model,
the whole training and testing procedure is run 20 times with all 40000 training
samples and 7800 test samples. Average and variance of testing accuracies are
written as average ± variance. Generally, WDCNN (6 layers) and DCNN9 (9
layers) both achieved solid diagnostic performances while Ince’s model (3 layers)
did not. Testing accuracy approaches 100% when the testing data are drawn from
the same data set as training data, but it could drop to 66.71% for DCNN9 under
a cross domain learning scenario. In the SF01→SF03 scenario, RSN successfully
boosted the domain adaption ability of three CNNs by 11.89% (Ince’s, 62.74
to 74.63), 16.21% (WDCNN, 67.10 to 83.31), and 18.45% (DCNN9, 66.71 to
85.16). There are two interesting differences between the results of SF01→SF03
and SF03→SF01. All implemented models showed a better transfer ability when
they are trained by SF03 whose rotating speed fluctuating range is wider. A
wider range of working conditions produces vibration data featured with richer
information of the machine, thus the models can learn more from such vibrations.
Besides, in SF01→SF03, the performance can be largely improved by RSN. In
SF03→SF01, although RSN fails to boost the mean value, it managed to suppress
the variance of the accuracies by 2.52%, 2.8% and 4.47% w.r.t. Ince’s model,
WDCNN and DCNN9.

The number of training samples versus testing errors of DCNN9 is plotted in
Fig. 4. Generally, error rates show downward trends as the number of training
samples increases. The solid lines obtained with RSN are lower than correspond-
ing dash lines from raw vibrations. RSN shows its advantage when the number
of training samples is relatively small. This is a good evidence that RSN can be
used as a regularization of data to guard against the over-fitting phenomenon for
our CNN model. Except for SF01→SF03, error rates output from raw and RSN
data are approached as the number of training samples increases. SF01→SF03
is a scenario where the models are tested with data that are collected from
unseen rotating speed on training stage. A model’s diagnostic accuracy can be
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Table 2. Performance comparison of models

Method SF01→SF01 SF01→SF03 SF03→SF01 SF03→SF03

Ince’s [6] 90.85 ± 1.13 62.74 ± 1.67 72.35 ± 6.80 77.63 ± 1.14

Zhang’s [23] 99.99 ± 0.00 67.10 ± 7.01 91.30 ± 7.78 99.91 ± 0.00

Proposed 99.98 ± 0.00 66.71 ± 5.02 89.76 ± 7.89 99.84 ± 0.01

RSN-Ince’s 93.94 ± 0.89 74.63 ± 0.97 79.20 ± 4.28 86.22 ± 0.97

RSN-Zhang’s 99.99 ± 0.00 83.31 ± 3.72 91.01 ± 4.98 99.89 ± 0.00

RSN-proposed 99.99 ± 0.00 85.16 ± 3.38 90.22 ± 3.42 99.84 ± 0.00

boosted by collecting more training samples but would still drop dramatically
when rotating speed range expands. RSN as a data preprocessing method is
effective when dealing with the cross domain learning problem brought along by
the rotating speed variation.
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Fig. 4. Testing error trends of DCNN9 for 8 different scenarios as the number of train-
ing samples increases.

5 Conclusion

CNN is a powerful deep learning tool that can be utilized to solved many pat-
tern recognition problems including fault diagnosis. However, CNNs have trouble
identifying vibration signals collected under unseen working conditions. The pro-
posed RSN is a good compensation for this issue. The main findings of this study
can be concluded as follows:
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1. The health condition of a rotating machine is successfully diagnosed by
trained CNNs using a 0.2 s vibration data sequence even if the rotating speed
is fluctuating;

2. It is shown that a wider range of dynamic response of a machine helps CNNs
models learn better diagnostic ability;

3. Generalization ability of CNNs can be boosted by feeding them with more
data. But a knowledge based signal processing can be very effective when
adapting unseen working conditions.

Further investigations to RSN are to carried out to adapt contacted
accelerometers that are commonly used for fault diagnosis. Other effective forms
of combination of expert diagnosis knowledge and deep learning could be intro-
duced. We also believe that there exists intelligent models who are capable of
finding the correlation between vibration data and rotating speed by themselves.
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